Akaike Information Criterion

Akaike Information Criterion

Bayesian methods, #statistics

Reasons for information criteria can be found in a book Information Theory and Statistics by Kullback. Explains well.

True model yi = 1 + x0.1 - x2 0.2 …

Various models (hundreds, thousands) ∑ …

Choose model by best (smallest) AIC/BIC/DIC/WAIC.

AIC = D train + 2p

AIC is an approximation that is reliable only when: (1) The priors are flat or overwhelmed by the likelihood. (2) The posterior distribution is approximately multivariate Gaussian. (3) The sample size N is much greater than the number of parameters k.

Watanabe-Akaike Information Criterion

Like AIC, you can rank models by WAIC. But a more interpretable measure is an Akaike weight. The weight for a model i in a set of m models is given by

node:internal/modules/cjs/loader:1228 throw err; ^ Error: Cannot find module 'katex' Require stack: - /home/kept/private-dotfiles/.config/emacs/texToMathML.js at Module._resolveFilename (node:internal/modules/cjs/loader:1225:15) at Module._load (node:internal/modules/cjs/loader:1051:27) at Module.require (node:internal/modules/cjs/loader:1311:19) at require (node:internal/modules/helpers:179:18) at Object. (/home/kept/private-dotfiles/.config/emacs/texToMathML.js:1:15) at Module._compile (node:internal/modules/cjs/loader:1469:14) at Module._extensions..js (node:internal/modules/cjs/loader:1548:10) at Module.load (node:internal/modules/cjs/loader:1288:32) at Module._load (node:internal/modules/cjs/loader:1104:12) at Function.executeUserEntryPoint [as runMain] (node:internal/modules/run_main:173:12) { code: 'MODULE_NOT_FOUND', requireStack: [ '/home/kept/private-dotfiles/.config/emacs/texToMathML.js' ] } Node.js v20.18.1

where dWAIC is the difference between each WAIC and the lowest WAIC, i.e. dWAIC = WAICi - WAICmin.

Leave-one-out cross-validation (LOO-CV)

New kid on the block, around 2020 it was the best (for which situations?).

Created (3 years ago)